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Abstract

Monocular estimation of three dimensional human self-
contact is fundamental for detailed scene analysis includ-
ing body language understanding and behaviour modeling.
Existing 3d reconstruction methods do not focus on body
regions in self-contact and consequently recover configura-
tions that are either far from each other or self-intersecting,
when they should just touch. This leads to perceptually in-
correct estimates and limits impact in those very fine-grained
analysis domains where detailed 3d models are expected to
play an important role. To address such challenges we de-
tect self-contact and design 3d losses to explicitly enforce it.
Specifically, we develop a model for Self-Contact Prediction
(SCP), that estimates the body surface signature of self-
contact, leveraging the localization of self-contact in the im-
age, during both training and inference. We collect two large
datasets to support learning and evaluation: (1) HumanSC3D,
an accurate 3d motion capture repository containing 1, 032
sequences with 5, 058 contact events and 1, 246, 487 ground
truth 3d poses synchronized with images collected from mul-
tiple views, and (2) FlickrSC3D, a repository of 3, 969 im-
ages, containing 25, 297 surface-to-surface correspondences
with annotated image spatial support. We also illustrate how
more expressive 3d reconstructions can be recovered under
self-contact signature constraints and present monocular de-
tection of face-touch as one of the multiple applications made
possible by more accurate self-contact models.

Introduction
Most monocular 3d human reconstruction systems do not
directly infer human self-contact, although its central role in
correctly recognizing the subtleties of many iconic poses or
gestures is widely acknowledged perceptually. Current mod-
eling deficiencies result in contact regions either far from
each other or self-intersecting in the final 3d reconstruction,
when they should instead just touch (e.g. contact between
one’s hand and chin). In turn, unpredictable reconstructions
of self-contact decrease the appeal of using 3d representa-
tions for fine grained analysis of behavior and intent, par-
ticularly as many self-touch events are elicited frequently,
and with little or no human awareness. Correctly tracking
self-contact would be invaluable not just for behavior analy-
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Figure 1: Our self-contact prediction network (SCP) esti-
mates the body regions in contact, their correspondences and
the self-contact positioning in image space.

sis but in assessing hygiene and possible health implications
during a pandemic.

To overcome some of the shortcomings of existing, self-
contact agnostic, 3d reconstruction methods, we propose to
represent self-contact explicitly and show how the result-
ing models can assist behavioural understanding in appli-
cations assessing face touching. Our models learn to pre-
dict the image location of contact in order to assist the
detection of body regions in self-contact, as well as their
signature, defined as the correspondences between regions
on the surface of a human body model that touch. Condi-
tioned on such detailed estimates self-contact can be recov-
ered correctly in the 3d reconstruction. To train models and
for large-scale quantitative evaluation, we collect and an-
notate two large scale datasets containing images of people
in self-contact. HumanSC3D is an accurate 3d motion cap-
ture dataset containing 1, 032 sequences with 5, 058 contact
events and 1, 246, 487 ground truth 3d poses synchronized
with images captured from multiple views. We also collect
FlickrSC3D, a dataset of 3, 969 images, containing 25, 297
annotations of body part region pairs in contact, defined on
a 3d human surface model, together with their self-contact
localisation in the image.

The main contributions of the paper are as follows:

• Introduce a first principled model to detect self-contact
body regions and their signature. Our novel deep neural
network SCP is assisted by an intermediate self-contact
image localisation (branch) predictor, leveraged both in
training, for local feature selection, and in testing, by en-
forcing consistency with the estimated 3d contact signa-
ture.

• Novel, task-specific, large scale, valuable community
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datasets capturing people in self-contact, together with
dense annotations of a 3d body model to capture the sur-
face regions in contact, as well as image annotations as-
sociated to the observed points of contact. The data and
models will be made available for research.

• Quantitative and qualitative demonstration of metrically
more accurate and perceptually veridical 3d reconstruc-
tions based on self-contact signatures.

• A foundation for a large class of applications that would
benefit from accurate 3d self-contact representations, such
as, health monitoring of possible infections when hands
touch parts of the face (mouth, nose, eyes) in hospitals
or during a pandemic, or subtle behavioral understand-
ing of gestures for robot-assisted therapy of children with
autism, to name just a few.

Related Work
Automatic 3d human pose and shape estimation from im-
ages and video has been increasingly studied in recent years
and significant progress has been made (Mehta et al. 2018;
Zanfir et al. 2018; Li et al. 2019a; Su et al. 2019; Benzine
et al. 2019; Kolotouros et al. 2019; Kanazawa et al. 2019;
Kocabas, Athanasiou, and Black 2020). These methods fo-
cus on 3d pose, and to some extent shape estimation, and
person’s relative placement with respect to the scene. How-
ever, the subtleties of 3d shape especially in conjunction
with contact are still largely unexplored, with vast poten-
tial for improvement well beyond existing art. Challenges in-
clude human-object interaction, inter-human interactions or
human self-contact. In this paper we present models and in-
sights - methodological, experimental and logistic, in terms
of data collection - focusing on human self-contact. In the
rest of this section we review previous work on human con-
tact and self-contact applications.
Self-Contact. Most of previous work on self-contact
(Tzionas et al. 2016; Tzionas and Gall 2013; Taylor et al.
2017; Mueller et al. 2019) applies to the interaction of hu-
man extremities, such as hands. Tzionas et al. (2016) intro-
duces a method for modelling 3d hand to hand or hand to
object interactions based on RGB-D data. The hand recon-
struction is done via an energy-based modeling which incor-
porates physics and collision constraints. However the shape
of the hand is not estimated, and only a standard template
is used. Mueller et al. (2019) propose a similar real-time
system based on a RGB-D sensor that is also able to esti-
mate the shape and pose of interacting hands. None of the
above methods explicitly detects the regions in self-contact
or predicts their signature. In contrast, we handle full bodies,
not only hand regions, and do not require depth data. Oth-
ers (Bogo et al. 2016; Zanfir, Marinoiu, and Sminchisescu
2018; Pavlakos et al. 2019) use non-self intersection con-
straints to prevent inadmissible 3d human reconstructions.
Avoiding self-collisions only, and in the absence of any se-
mantics of self-contact and the underlying surface regions,
however, makes it difficult to enforce self-contact of surfaces
when these actually touch.
Human - Object/Scene Contact. Contact between humans
and the environment has also been studied recently. Hassan

et al. (2019) propose an optimisation method for 3d human
shape estimation which incorporates scene constraints (in-
cluding a contact-aware loss function) in the form of depth
information. Leveraging the same contact loss, (Zhang et al.
2020) learn how to plausibly place 3d people in 3d scenes.
Contact between human feet and the ground is also mod-
eled in (Zou et al. 2020), as it has been previously done by
(Zanfir, Marinoiu, and Sminchisescu 2018), and used to con-
strain 3d human reconstruction. Interaction with objects is
also studied in (Hasson et al. 2019), who jointly model the
reconstruction of human hands and interacting objects based
on single view RGB data. Li et al. (2019b) estimates contact
positions, forces and torques.
Human - Human Contact. Contact between people is typ-
ical in close interactions like business meetings, informal
conversations, or other social events. Liu et al. (2013, 2011)
scan participants and rig them to a 3d skeleton. Given a
green background setup, the motion in various scenarios is
recorded and later estimated based on an energy model. Yet,
the interaction between participants is modelled solely by
non-self intersection constraints. In our recent work (Fier-
aru et al. 2020) we model and learn contact regions between
people by means of their contact signature. However, we did
not cover self-contact and the image localization of contact
is not annotated or estimated. Still, in this work we also
consider as baseline (Fieraru et al. 2020)’s ISP prediction
method, adapted to estimate self-contact.
Applications. Self-contact prediction can enable numerous
applications, and we only reference a few here. Kwok, Gral-
ton, and McLaws (2015) study hygiene and virus transmis-
sion, by monitoring how often students touch their face with
their hands. Yet, data is gathered manually with multiple in-
vestigators annotating videotape recordings. Mueller, Mar-
tin, and Grunwald (2019) also study the locations and du-
rations of facial self-touches, but using accelerometers and
EMG. An automatic labeling approach such as our SCP
has the potential to enable the automation of larger such
quantitative studies using only RGB sensors. Gesture analy-
sis can benefit from improved self-contact signature predic-
tions. For example, applause detection (Manoj et al. 2011)
can possibly be performed from soundless videos as the de-
tection of frequent self-contact between one’s hands. Simi-
larly, a self-contact signature such as covering ears with both
hands can be used as a signal of patients’ noise-sensitivity,
with applications in robot-assisted autism therapy (Rudovic
et al. 2017; Marinoiu et al. 2018).

Methodology
In this section, we describe our proposed model SCP to
predict the image spatial support of self-contact, the self-
contact segmentation and the self-contact signature, as well
as our model for 3d human reconstruction under self-contact
constraints. Building up on our earlier work on modeling
contact between people (Fieraru et al. 2020), we define the
self-contact segmentation and signature of a person in an
image I by discretizing of the surface of the human body
model intoNR regions. In our case, region-level self-contact
signature CR(I) ∈ {0, 1}NR × {0, 1}NR is defined as
CR

r1,r2(I) = 1 when region r1 is in contact with region
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Figure 2: Our SCP architecture that estimates self-contact spatial supportK, supervised by bothLK (eq. 2) andLsep (eq. 3), and
self-contact segmentation S and signature C, supervised by losses LS and LC . The input is an RGB image cropped around a
person. SCP predicts the spatial support of self-contactK with ΘK and uses it to select local features (one for each body region).
Merged with global features, these are processed by an aggregation layer Θagg and specialization layers, for segmentation ΘS

and signature prediction ΘC .

r2, where r1 6= r2 are surface regions of the same person
and CR

r1,r2(I) = 0 otherwise. Note that CR(I) is a symmet-
ric matrix. Similarly, region-level self-contact segmentation
SR(I) ∈ {0, 1}NR is defined as SR

r (I) = 1 when r is in
contact with any other surface region on the same body and
SR
r (I) = 0 otherwise. In addition, we introduce the notion

of image support of a region self-contact:
KR(I) = {(xr, yr)|SR

r (I) = 1} (1)
where [xr, yr] is the coordinate of the center of region r pro-
jected in the image.

An overview of SCP is illustrated in fig. 2. SCP takes as
input an RGB image cropped around a person and learns to
extract image space features Θfeat using the backbone of
the ResNet50 (He et al. 2016) architecture, up to the 16th
convolutional layer.

Self-Contact Image Support
One way in which the image support of self-contact can
be leveraged is by informing the selection of local features
needed for downstream tasks. To this end, after the feature
encoder Θfeat, we extract a set of NR heatmaps using ΘK

and apply the softargmax operation to obtain a set of NR

image coordinates {(x̃r, ỹr)|r ∈ {1, . . . , NR}}.
For regions that belong to the image support of self-

contact ground truth KR(I), we apply the Euclidean loss
LK to guide the discovered landmarks towards the ground-
truth image support. Note that corresponding surface regions
in self-contact have the same spatial support.

LK =
1

|KR(I)|
∑

(xr,yr)

∈KR(I)

‖(xr, yr)− (x̃r, ỹr)‖22 (2)

For pairs of regions not in self-contact, we impose a sepa-
ration constraint Lsep to guide them towards different image

areas. We adopt the loss function proposed in (Zhang et al.
2018), that highly penalizes small distances between points
and vanishes quickly as distance between them increases.

Lsep =
∑

(r1,r2)

CR
r1,r2

(I)=0

exp

(
‖(x̃r1 , ỹr1)− (x̃r2 , ỹr2)‖22

−2σ2
sep

)
(3)

One can observe that Lsep is a weakly-supervised loss, since
it does not require ground truth support KR(I), but only
ground truth self-contact signatures CR(I).

Self-Contact Segmentation and Signature
The network can use the NR landmarks as putative loca-
tions where local image features can be extracted. For each
region r, we sample the image space features at location
(x̃r, ỹr). Since (x̃r, ỹr) are continuous, we bilinearly inter-
polate between features at the 4 nearby discrete coordinates
on the image space grid. Each of the NR local features are
then concatenated with global features (obtained by a holis-
tic pooling operation on the image space features) and fed to
an aggregation module Θagg . This is implemented as a se-
ries of two fully connected layers that progressively reduce
the dimensionality of the NR features.

For self-contact segmentation and signature tasks, we
draw inspiration from the two specialization layers and the
underlying losses introduced in (Fieraru et al. 2020). ΘS

and ΘC are fully connected layers, and LS ,LC are sigmoid
cross-entropy losses, with the positive and negative classes
appropriately weighted. While LS is applied directly on the
output of ΘS , for the case of correspondences, the loss LC

is applied on the feature similarity matrix FFT , where F
is the output of ΘC . We also experiment with the Euclidean
distance as an alternative similarity metric to the dot prod-
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uct used in FFT , but confirm experimentally that it does not
outperform it.

At inference, we propose, as novelty, to use both the es-
timated self-contact segmentation and the self-contact im-
age support in order to limit erroneous correspondences in
the predicted self-contact signature, as this has a large out-
put space and is difficult to learn. First, we remove all cor-
respondences involving regions not found in the predicted
segmentation. Second, we remove all predicted correspon-
dences between two regions whose estimated landmarks are
not close to each other. This enforces consistency of signa-
ture with the image support, since two regions in correspon-
dence should also have their image projection in proximity.

Self-Contact Signatures for 3D Reconstruction
Self-contact signatures are also used to constrain 3d human
reconstruction to be consistent. We showcase this using the
optimization framework of (Zanfir, Marinoiu, and Sminchis-
escu 2018) augmented in (Fieraru et al. 2020) with inter-
action contact signature losses. The cost function, adapted
for the reconstruction of a single person, and by using self-
contact consistency, becomes:

L = LS + Lpsr + Lcol + LG (4)

whereLS is the projection error with respect to estimated se-
mantic body part labeling and 2d body pose, Lpsr is a pose
and shape regularization cost, and Lcol is a self-collision
penalty term. LG = LD + LN is adapted to be a contact
consistency cost for self-contact signature, where LD min-
imizes the distance between pairs of regions in self-contact
and LN is a term aligning the orientation of region surfaces
found in self-contact.

Please check our Sup. Mat. for further details on both the
SCP network and the optimization framework.

Proposed Datasets
HumanSC3D. As current 3d human pose datasets such as
Human3.6m (Ionescu et al. 2014) or 3DPW (von Marcard
et al. 2018) contain relatively few frames in self-contact,
to evaluate our proposed methodology, we collect a new
dataset of people in more challenging self-contact poses.

HumanSC3D contains 3d motion capture data of 6 hu-
man participants (3 men and 3 women between 20 and 30
years old with various fitness levels and body shapes), and
videos captured by 4 synchronized RGB cameras. The sub-
jects are shown a series of images with ordinary poses and
self-contact and asked to reproduce only the type of contact
they see (not the pose), such as: touching one’s chin, cross-
ing one’s legs or arms, etc. In addition, they are instructed to
continuously change their body position and orientation rel-
ative to the cameras for increased variability. For each sce-
nario, we record a short clip that captures the transition from
an A-pose to the desired self-contact and back to the A-pose.
In total, each subject performs 172 motions, out of which
116 are standing, 20 sitting on the floor and 36 sitting on or
standing next to a chair, summing up to a total of 1, 246, 487
ground truth 3d poses and associated RGB images.

We also capture each subject’s body shape using a 3d
body scanner. By fitting our body model to the body scans

for shape and to the 3d marker positions for pose, we
also obtain (pseudo) ground truth reconstructions (Xu et al.
2020).

For each of the 172 self-contact scenarios of any given
subject we extract a middle frame (where the person is in
self-contact) and manually label the body regions in con-
tact and their correspondence. The annotation is performed
by clicking on the surface of a 3d human body model with
∼ 10k vertices. In addition, the annotators are also asked
to roughly indicate the spatial support of the self-contact
in the image, by clicking in the original image at the po-
sition of each self-contact. In this way, we obtain 4, 128
images with people and associated self-contact informa-
tion (multiple correspondences between two facets of the
mesh and pixels of the image). Although in a controlled
environment, we choose to manually annotate self-contact
for higher quality control. Alternative approaches, such as
multi-view marker-based reconstruction, can still fail under
complex self-contact, especially for the hand regions where
markers are sparsely placed or occluded.

contact no contact uncertain contact

Figure 3: Examples of images from our FlickrSC3D (top)
and HumanSC3D (bottom) dataset. People in self-contact
(left). People not in self-contact (center). Uncertain whether
the person is in self-contact or not (right).

FlickrSC3D. To further extend our experiments to natural
settings, we gather 3, 969 images under the CC-BY license
from Flickr, containing persons in self-contact. To obtain
this data, we first crawl images with people by choosing a
wide variety of tags (from daily activities to dance or sports)
and run a person detector on the selection. Then, we pick
images with persons in self-contact by manually classifying
each person’s bounding box in one of the 3 classes: ”con-
tact”, ”no contact” and ”uncertain contact” (see fig. 3). To
ensure pose variability among images with persons in self-
contact we additionally run a 3d pose estimator (Zanfir et al.
2018) and greedily select images that have a large 3d pose
distance compared to the ones already selected. For the final
pool of images we annotate the self-contact signature and
image-space support of the signature, in a similar way to the
HumanSC3D dataset. Statistics regarding the self-contact
on the in-the-wild FlickrSC3D dataset can be visualized in
fig. 4.
Annotator consistency. For a small subset of images from
both datasets, we ask two raters to annotate the self-contact
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Num. Segmentation IoU Signature IoU
Reg. HumanSC3D FlickrSC3D HumanSC3D FlickrSC3D
75 0.469 0.528 0.315 0.422
37 0.560 0.564 0.512 0.475
17 0.703 0.664 0.590 0.579
9 0.787 0.768 0.685 0.692

Table 1: Annotator consistency, function of reg. granularity.

signature. We check the annotator consistency at different
levels of granularity of the body regions (from a fined-
grained split into 75 regions to a coarser one, of only 9 body
regions). We measure the intersection over union (IoU), first
at a body region segmentation level, and then also by tak-
ing into account the set of correspondences between regions.
Results are shown in table 1. As in many other tasks, hu-
man annotation is not perfect, but it can be noticed that at
smaller levels of granularity consistency increases and is of
practical use (this certainly improves the quality of 3d re-
constructions, as shown qualitatively and quantitatively in
the following section).

Figure 4: Body region frequency of self-contact (75 regions)
(left). Note the left-right symmetry and the high frequency
for the arms, hands, legs and torso regions. Self-contact cor-
respondence counts (17 regions) (right).

Experiments
Self-Contact Image Support, Segmentation and Signa-
ture. To assess the performance of our SCP network, we val-
idate and test it on the FlickrSC3D dataset, which we split
in the usual train (80%), test (10%) and validation (10%)
subsets. We train using the training set, validate our meta-
parameters on the validation set and show the quantitative
analysis on the test set.

Since we are the first to propose explicitly learning the
self-contact of the human body, there is no available method
to compare against. The closest work in the literature is the
ISP network (Fieraru et al. 2020) which predicts the con-
tact signature between two humans in contact, which we
adapt to learn a self-contact signature. We achieve it by re-
moving one of the two computational pathways of ISP (the

Figure 5: GT image self-contact support (left). Intermedi-
ate contact image support of regions predicted to be in con-
tact (within the segmentation prediction) (center). Final es-
timated contact image support of regions found to be in cor-
respondence and having nearby spatial support (right).

graph convolutional layers for one person and its respective
specialization tasks for segmentation and signature learn-
ing) and then train and validate on the self-contact dataset
FlickrSC3D. We train all methods on the finest granular-
ity available (NR = 75), but also report results on multi-
ple coarser granularities (NR = 37, 17 and 9), following the
region splitting used in ISP for comparison.

On both datasets, annotators have the freedom to choose
whichever correspondences between facets of the human
model and the image they prefer (as long as they are valid
and the region-level self-contact segmentation is complete).
This can lead to different multiple clicks in the image sup-
port of the same region. We set the ground truth image sup-
port of the respective region containing multiple coordinates
as their average. Since the signature annotation is not nec-
essarily complete (either because some regions are flagged
masked, when it is unclear in the image if they are involved
in self-contact or not, or because just a subset of correspon-
dences is annotated), we neither penalize them in training
nor in evaluation.

Table 2 shows quantitative results in terms of the intersec-
tion over union metric IoUNR

, computed for different NR.
We show results for our method SCP and ablate different
components. The strength of the proposed method is best
seen at the finest level of granularity NR = 75, where it
more than doubles the signature prediction performance, at
0.301 vs. 0.133 for ISP. The scenario where no additional
supervision is used (for the self-contact image support) and
the landmark discovery is unconstrained (SCP w/o Lsep and
LK) also outperforms ISP, showing that the effectiveness of
our method does not only stem from the newly proposed
self-contact image support annotations, but also from the
more robust and specialized architecture. The effectiveness
of the separability constraint Lsep is also shown for the self-
contact signature task. Moreover, the experiment where the
self-contact signature is not constrained to be consistent with
the image support (0.244 IoU75) shows the crucial, positive
effect, of spotting and eliminating spurious correspondences
by using the estimated image support. Fig. 5 visualizes the
image support estimates after applying different constraints.
Hand-Face Self-Contact To assess the possible application
to analyzing disease transmission, we evaluate the hand-to-
face self-contact detection. On our collected HumanSC3D,
the hand-face correspondence is present in 34% of im-
ages. On the problem of hand-to-face detection, SCP trained
for general self-contact prediction obtains 46% recall and
75% precision. When retraining SCP with losses penalizing
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IoU75 IoU37 IoU17 IoU9

Method Segm. Signature Segm. Signature Segm. Signature Segm. Signature
SCP 0.469 0.301 0.507 0.339 0.591 0.442 0.693 0.550

SCP w/o Lsep 0.465 0.289 0.510 0.335 0.603 0.428 0.692 0.536
SCP w/o Lsep, w/o LK 0.460 0.236 0.502 0.283 0.605 0.395 0.708 0.514

SCP w/o imposing signature
consistency with image support 0.469 0.244 0.507 0.288 0.591 0.395 0.693 0.501

ISP (Fieraru et al. 2020) (adapted for self-contact) 0.462 0.133 0.503 0.186 0.583 0.305 0.688 0.460
Human Consistency 0.528 0.422 0.564 0.475 0.664 0.579 0.768 0.692

Table 2: Results of our self-contact segmentation and signature estimation on FlickrSC3D, evaluated for different region gran-
ularities on the human 3d surface (from 75, down to 9 regions). Human consistency is the same as in table 1. We ablate the
proposed losses and compare with the ISP baseline.

Figure 6: Pose error for a subset of HumanSC3D, each annotated by 2 human raters. We reconstruct the humans by enforcing
contact consistency using the correspondences set by each annotator (green and blue line) and also without enforcing contact
consistency (red line, image IDs are ordered following this error). Enforcing contact consistency leads to smaller reconstruction
error in 71.5% cases (whether using correspondences from Ann. 1 or from Ann. 2), with 74% agreement over the effect of
enforcing contact consistency (either annotations improving or deteriorating the reconstruction simultaneously). The higher the
initial pose error, the higher the improvement when enforcing self-contact consistency.

only the hand-to-face self-contact, the detection improves,
to 53% recall and 76% precision. These are both major im-
provements from the 10% recall and 66% precision obtained
by the adapted ISP baseline. Still, the current results show
that self-contact prediction is not a trivial problem, (see our
Sup. Mat. video for failure cases), and can benefit from fu-
ture research, potentially based on some of the methodology
and data we provide.
Self-Contact Signature for 3D Reconstruction To quan-
titatively assess the impact of self-contact consistency con-
straints in the quality of reconstructions, we test our method
on the HumanSC3D dataset, where we report the MPJPE
(mean per-joint position error) to evaluate the inferred pose,
the translation error, the contact distance error (the minimum
Euclidean distance between each pair of facets from two re-
gions annotated to be in self-contact correspondence), and
the per-vertex Euclidean distance error, measured against the
(pseudo) ground truth meshes. Table 3 shows improvement
across all the metrics when annotated self-contact signature
is used to further constrain the reconstruction, showing that
our annotations are valuable. Fig. 6 plots the pose error for
correspondences from two different annotators. While self-
contact constraints do not always yield better reconstruc-
tions, on average, they do.

Fig. 7 shows reconstruction results for images in
FlickrSC3D, both with and without self-contact consistency
constraints. By adding the penalty on annotated regions in
correspondence, we recover accurate and visually plausible
3d reconstructions of challenging human poses.

Conclusions
We have presented the task of human self-contact estima-
tion and the design of the SCP methodology to detect body
surface regions in self-contact, the correspondences between
them, and their spatial support. By integrating this method-
ology with 3d explicit self-contact losses, we have shown
that 3d visual reconstructions of human self-touch events
are possible with superior quantitative and perceptual re-
sults over non-contact baselines. The models we built had
their component effectiveness evaluated based on a large
dataset collected in the wild, containing 25, 297 image-
surface-surface correspondence annotations, as well as a
motion capture dataset containing 5, 058 contact events and
1, 246, 487 ground truth 3d poses. This represents a consid-
erable amount of logistic, collection and annotation work,
involving human subjects, and will be made available to
the research community.1 Finally, we have demonstrated an
application to detecting face-touch and showed how self-
contact signatures can enable more expressive 3d recon-
struction, thus opening path for subtle 3d behavioral reason-
ing in the future.
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Optim. W/o chair - standing W/o chair - sitting W/ chair Overall
loss P T V C P T V C P T V C P T V C
L 93.8 408.4 76.6 12.9 116.1 424.1 93.1 26.6 107.2 426.2 84.6 23.7 98.2 414.2 80.2 16.4

L w/o LG 106.0 419.3 121.0 210.2 145.2 436.0 147.4 182.7 131.6 431.9 122.7 189.3 114.4 423.4 124.4 203.4

Table 3: 3D human pose (P), translation (T), vertex (V) estimation errors, as well as mean 3d contact distance (C), expressed
in mm, for the HumanSC3D dataset. Using the full optimization function, with the geometric alignment term on annotated
self-contact signatures, decreases the pose, translation and vertex estimation errors as well as the 3d distance between surfaces
annotated as being in contact.

Figure 7: 3D pose and shape reconstructions using our annotated self-contact data. Original image (left). Reconstruction without
considering the self-contact and the associated loss (center). Reconstruction that uses the self-contact annotations and the
corresponding loss (right).
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Broader Impact
While research is still experimental, in the long run our mod-
els can be integrated into systems performing large-scale
psycho-social studies of human behavior. Such models can
also be used with personal assistants that can operate undefr
high privacy standards and can be accountable to humans.
Assistants can rely on self-contact signatures to reason about
a person’s internal state including emotional response, and
could provide feedback to that person over a period of time,
for increase awareness or for positively changing habits. Our
work can also be potentially relevant to detect and correct
the unconscious behaviour of touching one’s mouth or face
with the hand (Kwok, Gralton, and McLaws 2015), in order
to avoid infections with various pathogens, if proper hygiene
is not maintained. In this regard, the models can be poten-
tially used in hospitals in order to monitor hygiene of both
patients and medical personnel. The work can also be poten-
tially applied in the monitoring and treatment of people with
a history of self-harm (Hawton et al. 2015). During data col-
lection, we aimed to reduce bias, by having a diverse and
representative collection of humans in self-contact, within
our limited subject and annotation budget.
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