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Abstract

This thesis addresses the multi-person tracking task with two types of representation:

body pose and segmentation mask. We explore these scenarios in the semi-supervised

setting, where one available annotation is available per person during test time. More

complex representations of people (segmentation mask and body pose) can provide richer

understanding of visual scenes, and methods that leverage supervision during test time

should be developed for the cases when supervision is available.

We propose HumanMaskTracker for the task of semi-supervised multi-person mask

tracking. Our approach builds on recent techniques proposed for the task of video

object segmentation. These include the mask refinement approach, training with syn-

thetic data, fine-tuning per object and leveraging optical flow. In addition, we propose

leveraging instance semantic segmentation proposals to give the tracker a better notion

about the human class. Moreover, we propose modeling people occlusions inside the

data synthesis process to make the tracker more robust to the challenges of occlusion

and disocclusion.

For the task of semi-supervised multi-person pose tracking, we propose the method

HumanPoseTracker. We show that the task of multi-person pose tracking can benefit

significantly from using one pose supervision per track during test time. Fine-tuning

per object and leveraging optical flow, techniques proposed for the task of video object

segmentation, prove to be highly effective for supervised pose tracking as well. Also,

we propose a technique to remove false positive joint detections and develop tracking

stopping criteria. A promising application of our work is presented by extending the

method to generate dense from sparse annotations in videos.
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Chapter 1

Introduction

1.1 Motivation

Enabling computers to understand visual scenes containing people has been a long re-

searched problem in the computer vision community. The interest in this topic is driven

by several reasons.

First, understanding scenes with people can be seen as a necessary step towards

solving the more general visual scene understanding task. Not only have visual scenes a

tendency to contain humans, but also people are one of the most complex object class.

Thus, the challenges and importance of the human category motivate addressing this

class separately.

Second, various applications can be enabled by advances in this field. Improving

driver-assistance systems could make traffic safer for pedestrians. Robots that could un-

derstand people’s actions would help us with physical tasks. Human pose understanding

could be used in the gaming industry and people tracking could be used in surveillance

systems.

There are various ways of representing instances of people in images: bounding

box, human keypoints (pose), segmentation masks, and many others. Estimating these

representations can also be done in image sequences (called tracking), with the added

requirement of maintaining identities of people over time.

In this thesis, we address tracking of two representations of people: their 2D body

pose and their segmentation mask. We consider the unconstrained scenario in which

multiple people can be present in the scene. Tracking of people is important for its

wide range of applications, from video surveillance to activity recognition and behavior

1



2 Chapter 1 Introduction

understanding. The motivation behind tracking body poses and segmentation masks of

people is that they are more complex representations than the usual bounding boxes,

hence they can enable a richer understanding of scenes.

Based on the levels of supervision assumed during testing, tracking can be catego-

rized into unsupervised tracking, semi-supervised tracking (generally requiring one or

more annotated frames) and supervised tracking (requiring some type of annotation in

each frame).

In this work, we propose the task of semi-supervised people tracking, which, to the

best of our knowledge, has not been addressed before. One motivation for developing

techniques that assume semi-supervision is that, in the case semi-supervision is available,

then it should be leveraged to improve tracking of people. Another motivation for this

scenario would be to use tracking to propagate people annotations to the neighboring

frames and reduce annotations costs.

In more detail, we address the following tasks:

• Semi-Supervised Multi-Person Segmentation Tracking (also referred to

in this thesis as Video Human Segmentation, Human Segmentation Tracking, or

Human Mask Tracking).

The task assumes supervision in the first frame of the video sequence, in the form

of one mask segmentation for each person that has to be tracked. The task is to

correctly predict in all consequent frames the segmentation mask of each of these

first frame annotated persons.

• Semi-Supervised Multi-Person Pose Tracking (also referred to in this thesis

as Multi-Person Pose Tracking, Human Pose Tracking, or just Pose Tracking ).

The task assumes one supervision from each person to be tracked in the video.

The ground truth (GT) pose is collected from the middle of the track of the target

person. The task is to correctly estimate the body pose of each of the persons to

be tracked in all frames of the video,

We treat the two tasks separately, although we think they could benefit from one

another in a joint setting.

For their effectiveness at learning the appearance of objects, we research convolu-

tional neural network (CNN) models for both tracking tasks.
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1.2 Challenges

The two tasks that we address come with similar challenges.

First, as in any learning system, the challenges of people tracking are stemming,

among others, by the data available for learning. Annotating data is expensive and, in

the case of videos, it manifests via a trade-off between datasets with few long sequences

and datasets with many short sequences (or just many static images). This comes at

the price of either limited appearance variability or limited motion information. Several

implied limitations:

• the development of end-to-end learning methods (that directly predict pose tracks

from video) is hard to achieve; end-to-end methods require larger amounts of

annotated data;

• using temporal information for learning stays challenging; recurrent neural net-

works (RNNs) add a new dimension in the input space; this highly increases the

number of parameters, and implicitly the required data for learning them;

Second, the task of tracking comes with its particular challenges:

• human motions and change of camera viewpoints alter the appearance, shape and

size of people across time;

• fast motion and/or occlusions break the temporal consistency assumption (the

changes in appearance, shape, size from one frame to another are small);

• similar looking people (usually in sport scenes where clothing is almost identical)

are hard to track even for people;

• people can disappear and reappear in the scene (when they move or when the

scene viewpoint changes);

1.3 Contributions

For the two tasks that we introduce, we present the following contributions:

Human Mask Tracking

• we adopt techniques proposed for the task of video object segmentation to the task

of multi-person mask tracking;
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• we make the method more robust to occlusions and disocclusions;

• we leverage information from an image-level instance semantic segmentation method

by learning about the human class;

Human Pose Tracking

• we adopt techniques proposed for the task of video object segmentation to the task

of multi-person pose tracking;

• we develop criteria to curate keypoint detections;

• we show that the method leverages the supervision to perform better tracking than

the state of the art unsupervised pose tracker;

• we show that the method can be used to generate dense from sparse annotations;



Chapter 2

Related Work

Our proposed methods are related to previous works involving image-level segmentation

and pose estimation, as well as video-level object tracking and pose tracking.

2.1 Image Level

Naturally, many of the recent advances in tracking have been preceded by and linked to

advances on image-level tasks.

2.1.1 Segmentation

Semantic Segmentation is the task of classifying each pixel of an image to a semantic

class. In this field, the development of fully convolutional networks (FCNs) by [Long

et al., 2015] has proved particularly influential, opening the door for end-to-end learning

for semantic segmentation. By turning fully connected layers of a CNN into convolu-

tional layers, [Long et al., 2015] transformed the CNN network from doing one dimen-

sional classification to performing pixel level classification. One particular problem with

this approach is the loss of spacial resolution due to use of strides in CNNs. Recent

approaches proposed different solutions for this issue, from using skip-layer connections

[Chen et al., 2016], to using dilated convolution [Chen et al., 2016] or using encoder-

decoder networks [Noh et al., 2015]. Also, post-processing with CRFs [Krähenbühl and

Koltun, 2011] is another technique used for smoothing the segmentation output.

In our Human Mask Tracking method, we repurpose the DeepLabv2 [Chen et al., 2016]

architecture designed for semantic segmentation to predict an instance segmentation

frame by frame.

5



6 Chapter 2 Related Work

Semantic Instance Segmentation is the task that in addition to classifying each pixel

in an image to a semantic class, it also groups pixels into object instances. A recent

approach combines object detection with semantic segmentation into fully convolutional

instance segmentation (FCIS) [Yi Li and Wei, 2017]. The current state of the art is

Mask-RCNN [He et al., 2017], which extends Faster-RCNN [Ren et al., 2015] by adding

one more branch for predicting segmentation masks in each region of interest.

In our experiments, we use FCIS, as the implementation of their method is publicly

available.

2.1.2 Pose Estimation

Pose Estimation also benefited significantly from the development of fully convolutional

networks. Most approaches treat each keypoint as a segmentation mask. Different

keypoint types can overlap with each other, case which is not punished during training.

In the case of single-person pose estimation, detection of keypoints is done by locating

the pixel with the highest confidence in each keypoint output channel. In the case of

multi-person pose estimation, there are two types of approaches. Bottom-up methods

[Insafutdinov et al., 2016], [Cao et al., 2016] first detect keypoints and then group them

together into people. Top-down approaches [He et al., 2017], [Papandreou et al., 2017],

on the other hand, first detect human bounding boxes and then apply single-person pose

estimation within each box.

In our experiments, we build on top of DeeperCut [Insafutdinov et al., 2016], which we

use as a single-person pose estimator.

2.2 Video Level

2.2.1 Object Tracking

Object tracking is a long studied problem in the computer vision field. If, originally,

object tracking was identified with tracking of boxes, now the term can also refer to

mask tracking.

2.2.1.1 Box Tracking

The classic box tracking task is semi-supervised. The bounding box of the object to be

tracked is provided in the first frame and the task is class-agnostic. While there is a large
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body of work addressing this task, our method is related to recent approaches based on

CNNs. [Held et al., 2016] proposes training a CNN to regress the bounding box frame by

frame, based on the object’s appearance and its previous frame prediction. [Nam et al.,

2016] proposed to fine tune the CNN tracker with object’s appearance. Both techniques

are adopted by [Khoreva et al., 2017b] and showed to be effective in class agnostic mask

tracking. We also adopt them for tracking masks and poses of people.

There is some body of work also addressing tracking of people as a task on its own.

The approaches are unsupervised and cover mostly tracking of people in street scenes

[Andriluka et al., 2008], [Milan et al., 2014], [Tang et al., 2017]. We are addressing a

more general scenario, where people appear in all types of environments and their poses

are not restricted to the standing or walking position.

2.2.1.2 Mask Tracking

Mask Tracking, also called Video Object Segmentation, is the task of tracking the mask

segmentation of an object through a video. The task is semi-supervised, receiving the

mask of the target object in the first frame of the video. Recent methods adopt the

previously mentioned box tracking techniques while repurposing semantic segmentation

architectures to obtain mask predictions.

[Khoreva et al., 2017a] proposes to synthesize possible future frames by exploiting

the supervision in the first frame. This is shown to fight the problems of domain shift

between training set and the testing set, as well as the dependence on large scale seg-

mentation datasets. Our Human Mask Tracking method also builds on this technique

and extends it to the multi-person scenario.

2.2.2 Multi-Person Pose Tracking

The multi-person pose tracking task was recently proposed in [Insafutdinov et al., 2017]

and [Iqbal et al., 2017], and involves tracking of poses of multiple people in unrestricted

scenes, without any supervision available during test time. The two initial approaches

propose a bottom-up approach. First, they detect all keypoints of all people in all frames

of the video. Then, an integer program optimization is grouping keypoints into people

over time.

More recent techniques are proposed in the PoseTrack challenge [Andriluka et al.,

2017]. They all approach the problem following a tracking-by-detection framework.

First, multi-person pose estimation is performed in each frame of the video. Second,

simple matching algorithms are used to link the detections over time.
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The pose tracking task we are targeting in this work is different, as it assumes

supervision during test time.



Chapter 3

Human Segmentation Tracking

3.1 Method

In this section, we detail our approach on the Human Segmentation Tracking task. We

assume the tracker receives supervision in the first frame of the video.

3.1.1 Architecture

Due to recent advances in Video Object Segmentation, we build upon the work of Mask-

Track [Khoreva et al., 2017b]. To extend the approach to multiple people, we address

tracking each person in the video as a separate problem.

MaskTrack approaches the problem of segmentation tracking as a mask refinement

task. To segment a particular instance, the prediction is guided by the appearance of the

object (the RGB image), temporal consistency (the previous frame mask) and motion

information (the optical flow). We use the same technique to track masks of humans.

In addition, in order to make the tracker people oriented, we employ human-specific

information from an image-level semantic instance segmentation system.

Formally, we predict the mask Mh
t of a human h in frame t as:

Mh
t = f(It, w(Mh

t−1,Ft),Sht ) (3.1)

where:

• f is the HumanMaskTracker, the function that we want to learn and use for frame-

by-frame prediction. Depending on the training procedure, the function can be

adapted per-person via fine-tuning (see Section 3.1.2.3).

9
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Sht

w(Mh
t−1,Ft)

It

Mh
t

Figure 3.1: HumanMaskTracker architecture. Inputs include the RGB image It, the
previous frame mask and motion information as w(Mh

t−1,Ft), and semantic instance
segmentation information Sht . The tracker is trained to predict Mh

t .

We model the function using a fully convolutional neural network designed for

semantic segmentation, DeepLabv2 [Chen et al., 2016], based on the VGG [Si-

monyan and Zisserman, 2014] architecture. We also experimented with the ResNet

[He et al., 2016] version of DeepLabv2, but the increase in performance was out-

weighed by the longer training time. Although semantic segmentation networks

usually accept only RGB images as input, they can be easily extended to accept

additional channels by increasing the depth of the filters of the first convolutional

layer (from 3 to 3 + n, where n is number of extra channels).

• It is the Current Image at frame t, in RGB color mode

• Mh
t−1 is the Previous Frame Mask of person h predicted on image It−1. In the

case where t = 1, the previous frame mask Mh
0 is already available as ground truth

due to the semi-supervised setting of the task.

The motivation to condition the prediction of Mh
t by Mh

t−1 comes from the tem-

poral consistency assumption, i.e. objects do not change their shape and position

too much from one frame to another. Therefore, the previous predicted mask can

be a good indicator of the location and shape of the mask in frame t.

• Ft is the Optical Flow between image It−1 and image It, which estimates the mo-

tion vector between the two frames. In our case, we compute it using FlowNet2.0

[Ilg et al., 2017], which is itself a trained convolutional neural network. It is esti-

mated by only using the two RGB images It−1 and It as input.

• w is an operation which warps a binary mask with the optical flow. We warp the

previous frame mask Mh
t−1 with the estimated optical flow Ft in order to have a

better localized mask. While Mh
t−1 is a good estimate of Mh

t , the warped version
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w(Mh
t−1,Ft) is even more indicative, as it incorporates motion information. This

method of leveraging optical flow was previously shown to be effective in [Khoreva

et al., 2017a].

• Sht is the Semantic Instance Segmentation of person h in image It. The mo-

tivation behind employing semantic instance segmentation is to guide the mask

propagation with specific information learned about the human class. We also ex-

perimented with semantic segmentation information (no instances), but leveraging

information about instances of people is more effective.

As shown in Figure 3.2, semantic instance segmentation outputs multiple mask

instances of different classes. To provide the network with an additional cue about

the location and shape of the human we are tracking, we select only the instance

of the person which overlaps the most with w(Mh
t−1,Ft). If such an instance exists

and the overlap is not 0, Sht will be the confidence map corresponding to that

mask, for it contains richer information than the binary mask. Otherwise, Sht will

be the null matrix. By confidence map, we refer to the CNN output where the

softmax segmentation loss is applied during training. It can be seen as a matrix

indicating the probability of each image pixel to be part of the foreground mask.

The overlap of the two masks is computed using the Jaccard Index (see Equation

3.2). The selection process is illustrated in Figure 3.3

To compute the semantic instance segmentation, we use the FCIS network [Yi Li

and Wei, 2017], which won the first place in the COCO segmentation challenge

2016. It is trained on COCO [Lin et al., 2014] to predict instance masks of 80

categories (with person being the most represented category).

See Figure 3.1 for a visualization of the simplified HumanMaskTracker architecture.

Once trained, the HumanMaskTracker is initialized with the first frame ground-truth

mask of the person it is supposed to track and then proceeds with predicting the future

masks frame by frame, following the temporal order. Note that the tracker is not fine-

tuned from one frame to another, only its input changes.

3.1.2 Training Stage

The fact that the tracker architecture does not exploit longer temporal information (over

many frames) comes to the benefit of the training procedure, which does not require

expensive densely annotated frames. Instead of using ground-truth masks Mh
t−1, M

h
t of

consecutive frames, [Khoreva et al., 2017b] proposes using only the ground-truth mask

Mh
t for the frame It and instead synthesize w(Mh

t−1,Ft). This way, the network can be
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Figure 3.2: FCIS output masks overlaid onto the image. Notice multiple object types
(person, car, bus) and multiple instances of the same object type (yellow and purple

persons).

Selected FCIS Mask

FCIS Person Masks @ It

Sht

w(Mh
t−1,Ft)

Figure 3.3: Process of selecting Sht . We start from all FCIS person masks (upper left
corner shows 4 people detected) and compute their overlap with w(Mh

t−1,Ft) (upper
right corner). The mask with the highest overlap is selected (lower left corner) and Sht

will be its corresponding confidence map (lower right corner).

trained with static images only, using image segmentation datasets. Our work adopts

Lucid Data Dreaming [Khoreva et al., 2017a], which takes the idea of data generation

even further by also synthesizing image data Iht . This is very beneficial as it addresses

the problem of domain shift between training and testing data.
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Test Set Supervision

1st Frame

Data
Generation

Tracker Init.

Mask Mh
0

Image Ih0

Tracker

Tra
in

in
g

Training Set

It w(Mh
t−1,Ft) Mh

t

Figure 3.4: Lucid data dreaming overview. To track person h, LucidDream first uses
the ground truth Mh

0 of Ih0 to synthesize possible future frames and annotations. It then
trains the tracker with the generated data, making the tracker adapt to the particular

sequence and person.

3.1.2.1 Lucid Data Dreaming

Lucid Data Dreaming addresses two important challenges of tracking with CNNs: on

one hand, the need of large datasets for training convolutional neural networks and, on

the other hand, the problem of domain shift between training and test data.

To ensure that the tracker is trained with samples close to the test sequence, the

work proposes to use the annotated first frame of the test sequence to synthesize data

specific to that sequence. The idea is to simulate possible future frames of the video,

train the network using them and have the tracker adapt better to the upcoming frames,

as illustrated in Figure 3.4.

To simulate future changes that can occur to the tracked object and the background,

[Khoreva et al., 2017a] proposes to use the mask Mh
0 to cut-out the object, inpaint the

background in that area, apply deformations to the cut-out object and then merge the

new object onto the new background. More specifically, the following operations are

applied:

• Foreground (Fig. 3.5D)/ Background (Fig. 3.5C) split: the mask Mh
0 (Fig. 3.5B)

indicates the pixels of the foreground object and removes them from the image I0

(Fig. 3.5A).

• Background inpainting (Fig. 3.5E): fill in the empty pixels in the background

by inpainting using [Criminisi et al., 2004].
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• Object appearance change (Fig. 3.5F): apply the following transformations to

the foreground: random rotation ±30◦, random scaling ±15% and random thin-

plate splines deformations of ±10% of the object size [Bookstein, 1989].

• Object location change (Fig. 3.5F): randomly place the object within the image

boundaries.

• Foreground / Background merge (Fig. 3.5G): applying Poisson matting to

remove merging artifacts.

• Illumination changes: modify the H and V channels in the HSV color encoding

with the function: f(x) = axb + c, where a ∈ 1± 0.05, b ∈ 1± 0.3, c ∈ ±0.07.

• Camera motion: apply the previously explained random affine transformations

to the new image.

All these transformations operate on I0 and create a synthetic image It. As the

parameters of these operations are known, the ground-truth mask annotation Mh
t can

also be computed (Fig. 3.5H).

Lucid Data Dreaming also synthesizes w(Mh
t−1,Ft). The warped previous frame

mask w(Mh
t−1,Ft) is, in essence, a noisy version of Mh

t , with noise introduced by the

prediction in the previous frame and the estimation of the optical flow. Instead of

synthesizing Mh
t−1 and Ft separately, [Khoreva et al., 2017a] synthesizes w(Mh

t−1,Ft)

directly (Fig. 3.5I) by applying the previously explained random affine transformations

and the random thin-plate splines deformations to Mh
t . This simulates the noise that

we expect from w(Mh
t−1,Ft) at test time.

The synthesis process described above can generate a large set of annotated training

samples. In their experiments, [Khoreva et al., 2017a] generate around 2.5k samples for

each object to be tracked.

3.1.2.2 Lucid Data Dreaming for Multiple People

Originally designed for the class-agnostic single object tracking, Lucid Data Dreaming

can be better tailored for the multiple humans tracking scenario.

Firstly, humans tend to interact with each other a lot. From the video sequence

perspective, this translates to many occlusions being present, which pose difficulties

to trackers. In Lucid Data Dreaming, the tracked person is always fully visible (see

Figure 3.5G), so the tracker does not learn to recognize the person when it is occluded.



Chapter 3 Human Segmentation Tracking 15

To this end, we propose synthesizing data jointly for all people in the sequence, which

allows to synthesize people-to-people occlusion (see Figure 3.6F).

Secondly, people generally stand on the ground, so video sequences are more prob-

able to show people touching the ground in the lower half of the image. Lucid Data

Dreaming places the objects randomly and uniformly within the image boundaries, which

creates many cases of the ”flying people” artifact (see Figure 3.5G). To mitigate this

issue, we propose placing people under an imaginary horizon line (see Figure 3.6F).

In more details, the following operations are applied:

• Foreground / Background (see Fig. 3.6B) split - cut-out all annotated humans

h in the sequence.

• Background inpainting (see Fig. 3.6C)

• Change appearance of each human h

• Change each person’s location:

– randomly place on the x axis such that there is a 50% chance of occlusion

with another person (any type of overlap of the bounding boxes on the x

axis); we also enable truncations (occlusions by the image boundaries);

– randomly place on the y axis such that the bottom of the person bounding

box is located under an imaginary horizon line in the middle of the y axis.

• Foreground / Background merge - blend one person at a time (See Fig. 3.6D,

Fig. 3.6E and Fig. 3.6F)

• Illumination changes

• Camera motion

These transformations create a synthetic image It (Fig. 3.6F) and one ground-truth

mask Mh
t for each human h annotated in the sequence (see all masks in Fig. 3.6G and a

particular one in Fig. 3.6I). We then apply the same previously explained non-rigid and

affine transformations to each non-occluded mask Mh
t to simulate the noise expected at

test time. After this is done independently for each person, we merge the masks in the

same order as in the merging of the foregrounds images. This gives us the w(Mh
t−1,Ft)

for each human h annotated in the sequence (see all masks w(Mh
t−1,Ft) in Fig. 3.6H

and a particular one in Fig. 3.6J).

Unless stated otherwise, the transformations follow the same choice of parameters

as [Khoreva et al., 2017a], as explained in Section 3.1.2.1. Figures 3.6I and 3.6J show
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that in this case of data synthesis, the tracked persons are not always fully visible, hence

some occlusions scenarios are modeled.

Note that the semantic instance segmentation channel also has to be generated.

While at test time we were running the FCIS network over the test image, at training

time we run it over the synthetic image. To indicate to the network which person we

are tracking, we select only the instance of the person closest to Mh
t . If such an instance

exists, Sht will be the confidence map corresponding to that mask. Otherwise, Sht will

be the null matrix. As described before, at test time we instead compute the overlap

with w(Mh
t−1,Ft) as an estimate of Mh

t .

With the synthesis method described above, we generate around 3.5k samples for

each tracked person.

3.1.2.3 Training Modalities

We adopt the training procedure that produces the best tracking results in [Khoreva

et al., 2017a]. This includes the following stages, in this order:

1. ImageNet pre-training - a common training stage in most CNNs; pre-training

on a large classification dataset like ImageNet [Deng et al., 2009] ensures that the

network is properly learning generic feature extractors that it might otherwise not

be able to learn only with a smaller dataset;

2. Per-dataset training - uses the synthetic data generated for all test persons in

the test set; its purpose is to train the network for the target task of mask tracking;

in our case, it learns how masks of persons look in general, what pixel represents

a human, what pixel does not;

3. Per-person tuning - uses the synthetic data generated for a specific test person

to train the network used to track solely that person; this creates one tracker fh

per test person h, which is able to recognize the appearance of the person it was

trained with;
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(A) I0 (B) Mh
0

(C) Background (D) Foreground

(E) Inpainting (F) Appearance and location change

(G) It

(H) Mh
t (I) w(Mh

t−1,Ft)

Figure 3.5: Example transformations applied by LucidDream. Note that, for brevity,
the illumination changes and the camera motion operations are not shown.
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(A) I0 (B) Background

(C) Inpainting (D) Merge first person

(E) Merge second person (F) Merge third person - It

(G) Mh
t , h ∈ {h1, h2, h3} (H) w(Mh

t−1,Ft), h ∈ {h1, h2, h3}

(I) Mh1
t (J) w(Mh1

t−1,Ft)

Figure 3.6: Example transformations applied by Lucid Data Dreaming for Multi-
ple People. Note that, for brevity, the illumination changes and the camera motion

operations are not shown.
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3.2 Experiments

3.2.1 Experimental Setup

3.2.1.1 Dataset

To the best of our knowledge, there is no available dataset containing dense mask anno-

tations of people. Nonetheless, the DAVIS 2017 dataset presented in [Pont-Tuset et al.,

2017] contains videos densely annotated with pixel-level masks of object instances (see

Figure 3.7). Although the dataset is class agnostic, it can be seen that many of the

objects which are annotated are actually humans. Therefore, we manually select the se-

quences containing at least one person and remove all the non-person object annotations.

We call this subset of annotations DAVIS Persons.

Figure 3.8 shows ground truth annotations of the DAVIS Persons dataset. The new

dataset contains 58 sequences with a total of 93 people. 20 sequences contain more than

one person per sequence. The average length of the sequences is ≈ 70 frames.

As in Davis 2017, all annotated people are present in the sequence starting at the

first frame. However, not all people that are visible in the first frame are annotated.

The ones that are not annotated tend to be located in the background and have smaller

sizes.

The scenes are complex and present diverse challenges:

• Appearance Change: people’s appearance changes during the video

• Fast Motion and Motion Blur : shown in [Perazzi et al., 2016] to be mutually

dependable

• Occlusions and Truncations: people’s masks partially or fully disappear due to

occlusions with other people, objects or the image boundaries; the opposite event,

Disocclusion, when the mask reappears, is also present

• Scale Variation: people’s sizes vary during the video

• Similar Looking People: people looking alike due to similar clothing

• Abrupt Camera Motion: sudden movement of the camera
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Figure 3.7: Example annotations of the DAVIS 2017 dataset. Notice that multiple
types of objects are annotated (people, animals, backpacks, vehicles, etc.). Object

classes are not provided.

3.2.1.2 Evaluation Metrics

In order to measure the quality of the predictions for the video human segmentation

task, we also adopt the evaluation metric from the Davis 2017 Challenge. [Pont-Tuset

et al., 2017]. We are using the intersection-over-union measure (also called the Jaccard

Index) as a similarity measure between the estimated mask and the ground truth of a

person in a particular frame:

IoU(P f
h , G

f
h) =

∣∣∣P f
h ∩Gf

h

∣∣∣∣∣∣P f
h ∪Gf

h

∣∣∣ (3.2)

where Gf
h refers to the ground truth mask and P f

h refers to the predicted mask for the

human h in the frame f . |M | refers to the number of pixels of mask M . A score of 1

denotes that the masks overlap perfectly (the masks are the same), while a score of 0

denotes that the masks have no common pixel.
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Figure 3.8: Example annotations of the DAVIS Persons dataset.

On a set of sequences S, the performance of the metric is given by the mean

intersection-over-union:

mIoU(S) =
1

|HS |
∑
h∈HS

1

|Fh|
∑
f∈Fh

IoU(P f
h , G

f
h) (3.3)

where Fh is the set of all frames of the sequence which contains person h and HS is

the set of all humans contained in the entire set of sequences S. As in the evaluation

procedure from [Pont-Tuset et al., 2017], Fh does not contain the first frame of the

sequence from which we use supervision. Note that in order to calculate the mIoU

score, the IoU is averaged first across all frames of the sequence and then across all

persons in the dataset. This implies that, on one hand, people in short sequences are as

important as people in long sequences and, on the other hand, small-scale people are as

important as large-scale people.

3.2.1.3 Training Details

For training, we use the same learning parameters as in [Khoreva et al., 2017a]. Opti-

mization is done using mini-batch stochastic gradient descent with 10 images per batch.

The learning rate policy is fixed with an initial learning rate of 10−3, the momentum is

9 ∗ 10−1 and the weight decay is set to 5 ∗ 10−4.
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Method mIoU

FCIS Oracle 55.2
LucidTracker Baseline 56.6

HumanMaskTracker 67.3

Table 3.1: Comparison of our best tracker to the oracle and baseline methods on the
Davis Persons dataset.

In terms of number of iterations, in the per-dataset training stage, we train for

40k iterations in all variants of the architecture. We have not noticed any significant

increase in performance when training for more iterations. In the per-person training

stage, where we fine-tune the model for a specific person, we train for 2k iterations.

As in [Khoreva et al., 2017b], we initialize the first convolutional weights corre-

sponding to the extra input channels (previous mask, FCIS channel) using Gaussian

noise.

In terms of computation time, training each per-person model takes around 3.5h

(including data synthesis, computing the instance segmentation predictions over each

synthetic RGB image, per-dataset training and per-person training). The per-dataset

training is amortized over all persons in the dataset. At test time, the system runs at

around 3.25s per frame (including the flow estimation with FlowNet2.0 [Ilg et al., 2017]

(∼ 0.5s) and the instance segmentation with FCIS [Yi Li and Wei, 2017] (∼ 0.25s).

3.2.2 Key Results

Since to the best of our knowledge there is no prior work in tracking masks of people, we

compare our main result against the state of the art method for video object segmenta-

tion (class agnostic) [Khoreva et al., 2017a] at the time of our experiments (June 2017),

whose results we reproduce. We also create an oracle experiment to simulate a two-stage

tracking by detection approach. Table 3.1 displays our main result and compares it to

the baseline and the oracle, while Figure 3.10 shows qualitative results for a few persons.

3.2.2.1 Oracle Experiment

Our FCIS oracle experiment simulates a tracking by detection approach. It computes

instance semantic segmentation in each frame of the video using FCIS. Then, for each

person in the ground truth, it selects as prediction the FCIS human mask proposal

which overlaps the most with the ground truth mask. If there is no such proposal or the

overlap is 0, the prediction is the zero matrix.
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LucidTracker Baseline
HumanMaskTracker

Tracked People

m
Io

U

Figure 3.9: Comparison of the performance of HumanMaskTracker versus the Lu-
cidTracker Baseline. The tracked people are ordered by their performance on each

method.

Having a perfect method of linking human masks over time (using ground truth),

this oracle experiment shows us that current methods of human masks detectors are far

from optimal.

3.2.2.2 Baseline

We propose a baseline method based on the LucidTracker [Khoreva et al., 2017a]. The

method was designed for the task of video object segmentation on the DAVIS 2016

dataset [Perazzi et al., 2016] and is handling class agnostic tracking of single objects.

We train the baseline to track the humans in DAVIS Persons.

The best performer in [Khoreva et al., 2017a] contains as input channels to the

network not only It and w(Mh
t−1,Ft), but also |Ft| as the flow magnitude. On the DAVIS

Persons dataset, using the flow magnitude is hurting tracking (see Section 3.2.3.3), so

we do not use it as part of the baseline.

3.2.2.3 HumanMaskTracker

Our proposed system HumanMaskTracker, previously explained in Section 3.1, is related

to the baseline method, but differs from it in two ways. First, it synthesizes data jointly

for all people in a given sequence, being able to model occlusions (see Section 3.1.2.2).

Second, it leverages semantic instance segmentation information about the human class

by adding one more input channel Sht to the network (see Section 3.1.1).
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Figure 3.10: Comparison of the predictions of the 3 methods on 3 different video
sequences. We show predictions by sampling along the video duration.
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Method mIoU ∆ mIoU

LucidTracker Baseline 56.6
LucidTracker Baseline + New Synthesis Process 62.5 ≈ +6%

Table 3.2: Effect of the new synthesis process.

3.2.2.4 Comparison

By inspecting the qualitative results (see Fig. 3.10), we see that the masks predicted

by the oracle are very coarse. This is mainly caused by the fact that FCIS was trained

on the COCO dataset [Lin et al., 2014], whose annotations are not very fine. The

annotations in the DAVIS dataset are, however, of very high quality. Although trained

on synthetic data, both our method and the baseline show very fine pixel masks, hinting

to the importance of leveraging high quality annotations. In addition to this, FCIS

usually fails quite a lot in detecting all people in crowded scenes, which can also be

observed in the boxing video shown in Figure 3.10.

Figure 3.9 shows the performance of the baseline and the HumanMaskTracker on

all persons. Note that the proposed method mostly improves the performance in the

tail of the plot, where tracking was underperforming. The predictions of both tracking

approaches depend on the predictions in the previous frames. If tracking fails in the

first frames, all consequent frames will most probably have poor predictions as well.

The second video in Figure 3.10 (lady with 2 dogs) shows the limitation of the

baseline in the case of occlusion, when the mask wrongly spreads to the two dogs. The

third video shows that the baseline is losing the mask of the person right from the

beginning, mostly caused by the very small visible mask in the ground truth. The

HumanMaskTracker performs well in both scenarios.

3.2.3 Analysis

In this section, we investigate the effect of different components in our tracker.

3.2.3.1 Effect of the New Synthesis Process

Table 3.2 shows the effect of replacing the Lucid Data Dreaming procedure used in the

baseline with the proposed Lucid Data Dreaming for Multiple People synthesis

process (Section 3.1.2.2). One can see the improvement is significant when modeling

occlusions and inserting prior knowledge about locations of humans.
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Figure 3.11: Performance difference when using Lucid Data Dreaming for Mul-
tiple People. The tracked people are ordered by their performance on the baseline.
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Figure 3.12: Qualitative comparison between the baseline and the baseline trained
with the new data synthesis method.

By analyzing Figure 3.11, we can see that the highest improvements happen for the

tracks that were before failing on almost the entire sequence. When occlusions occur,

masks can drift to other objects or can disappear. Either way, when the new synthesis

process is used, the tracker becomes more robust to occlusions and this positively impacts

the predictions in the frames following the occlusion.
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Method mIoU ∆ mIoU

HumanMaskTracker w/o Sht 62.5
HumanMaskTracker 67.3 ≈ +5%

Table 3.3: Effect of the Sht channel.

HumanMaskTracker w/o Sht
HumanMaskTracker

Tracked People

m
Io

U

Figure 3.13: Performance difference when adding the Sht channel. The tracked people
are ordered by their performance on the version without the Sht channel. The tracker
”HumanMaskTracker w/o Sht ” is the same tracker as ”Baseline + New Synthesis”

from Section 3.2.3.1

When visually inspecting the effect of the new synthesis process (see Figure 3.12),

we observe that the tracker is more robust to occlusions. Although we only simulated

people to people occlusions or truncation by the image border, the tracker also becomes

robust to occlusions by other objects (such as the tree in the biking sequence or the dogs

in the second video).

3.2.3.2 Effect of Sht

In Table 3.3 we show the additional 5% improvement that is brought by the extra Sht
channel. The FCIS human proposals can be noisy, but they guide the tracker with

general appearance information of the human class. Although our complex synthesis

process generates many people in future hypothetical frames, the notion of human is

limited to the appearance of the 93 people in the dataset from which we use supervision.

The signal given by Sht can help in cases where the synthesis process did not capture

enough appearance variability required in the future frames of the video.

In the top video showed in Figure 3.14, the tracker not using Sht has difficulties in

segmenting only the human. Instead, the mask extends to the barrel in front of the blue

cart. The given supervision mask (shown on the left) did not represent very well the

person changing its size and showing different points of view across the video. When
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Figure 3.14: Qualitative comparison between the HumanMaskTracker w/o Sht and
HumanMaskTracker

adding the additional Sht channel, the tracker receives enough signal about the human

we are tracking and manages to correctly separate it from the background.

When analyzing Figure 3.13, it is worth noting that a few tracks are actually hurt

by the new Sht channel. The bottom video showed in Figure 3.14 shows a case where the

tracked person disappears from the scene and the mask is transferred to another person

(the lady in the background who becomes visible while the man disappears). Because of

the crowded scene, our algorithm for selecting Sht from the many FCIS human proposals

is failing. One possible way of fixing this would be to teach the network to rely less on

the Sht channel by adding some noise in that input during training. This would include

random flips to other neighbouring FCIS proposals or zero masks. Whether or not this

would be overall helpful has to be checked.

3.2.3.3 Using Flow Magnitude

As mentioned before, the baseline we select does not use the flow magnitude as an

additional input channel.

In [Khoreva et al., 2017a], the synthesis process additionally computes the theoret-

ical optical flow between consecutive synthetic frames. At test time, the optical flow is
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(A) I0 (B) Mh
0

(C) Example of simulated optical flow
magnitude

(D) Example of estimated optical flow
magnitude

Figure 3.15: A sequence where multiple objects are moving together.

Variant Per-person fine tuning Warp with optical flow mIoU

no w, no FT 7 7 55.8

no w 3 7 64.8

HumanMaskTracker 3 3 67.3

Table 3.4: Effect of flow warping and fine tuning on HumanMaskTracker

estimated with FlowNet2. In DAVIS 2016, only one object is annotated per sequence

and it is usually the most salient one. Because of this, the magnitude of the FlowNet2

estimation is roughly the same as the segmentation mask of that object. Adopting

the flow magnitude |Ft| as an additional input channel actually improves video object

segmentation results, as shown in [Khoreva et al., 2017a].

On the other hand, in DAVIS persons many objects can be salient in each sequence

(e.g. Fig. 3.15B). As our supervision comes only from masks of humans (e.g. Fig. 3.15B),

the synthesis process can only simulate movements of humans (not other objects). In

Fig. 3.15C, one can see an example of the simulated optical flow magnitude used for

training. During test time, the optical flow magnitude is estimated with FlowNet2 and

fires on all moving objects, not only humans (e.g. Fig 3.15D). This discrepancy between

training and testing makes adopting |Ft| as an additional channel hurt the tracking

results, so we do not include the channel in out method or the baseline.
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3.2.3.4 Effect of Flow Warping and Fine Tuning

Table 3.4 shows, on one hand, the influence of warping the previous frame mask with

the optical flow. At training time, we keep the same procedure, while at test time we

use Mh
t−1 instead of w(Mh

t−1,Ft) as an estimate of Mh
t . The 2.5% mIoU improvement

when warping confirms that the optical flow contributes to a better estimation of Mh
t .

Second, the table shows a 9% decrease in mIoU when removing the last training

stage, the per-person fine tuning. In this case, we use the same CNN model for all

tracked persons in the dataset. When analyzing the qualitative results, we see that

without fine tuning the tracker experiences drift to other people and objects or the

mask disappears. This happens as the CNN has no knowledge of the appearance of the

tracked person other than the Mh
t−1 input, which is only an estimate. Fine tuning per

person ensures the appearance of the person is encoded in the weights of the CNN as

well.

3.2.4 Conclusion

The results show that the task of human segmentation tracking poses some challenges

on the DAVIS Persons dataset. It is not yet clear that a tracking-by-detection approach

can be successful, as current mask detection systems offer very coarse human mask

proposals and are often ambiguous in crowded scenes.

We show that some recent techniques proposed for the task of video object seg-

mentation can be successfully adopted for the task of human segmentation tracking.

These include the mask refinement approach, training with synthetic data, fine-tuning

per object and leveraging optical flow.

In addition, leveraging instance semantic segmentation proposals shows to provide

the tracker with useful information about the people class. Moreover, modeling occlu-

sions inside the data synthesis process proves to make the tracker more robust to these

challenges.
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Human Pose Tracking

4.1 Method

In this section, we detail our approach on the Human Pose Tracking task. We assume

the tracker receives one pose supervision for each test person from the center of their

track (note this is not necessarily the center of the sequence).

4.1.1 Architecture

First, the motivation of having supervision in the middle of the track (and not in the

first frame of the track) is that more frames will benefit from being close to the su-

pervision (both previous and next frames). Tracking backwards from the mid-track to

the beginning of the video is the same as reversing the order of the left sub-video and

starting from the first frame and tracking forward on the left sub-video. Our proposed

method does not make any assumption about the temporal order of the video (whether

the time is increasing or decreasing). Because of this, for the purpose of simplicity, we

will refer to the tracking scenario as starting from the first frame and proceeding frame

by frame in forward direction.

Having available supervision in the form of one pose of each tracked person, the

task of multi-person pose tracking can be approached as multiple separate single-person

pose tracking problems.

To track the pose of a person, we propose using a convnet-based approach. For each

new frame, we need to estimate the pose of a single target person, so we build upon

the convnet architecture of an image-level single-person pose estimator. However, the

frame can contain many people, so we need to direct the prediction towards the target

31
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instance. To this end, inspired by advances in video object segmentation [Khoreva

et al., 2017b], we use guidance from the appearance of the object (the RGB image),

temporal consistency (the previous frame pose) and motion information (the optical

flow) to predict the pose of the person of interest.

Formally, we predict the pose P h
t of a human h in frame t as:

P h
t = f(It, w(P h

t−1,Ft)) (4.1)

where:

• f is the HumanPoseTracker, the function that we want to learn and use for frame

by frame prediction. Depending on the training procedure, the function can be

adapted per-person via fine-tuning (see Section 4.1.2.3).

We model the function using a fully convolutional neural network designed for

single-person pose estimation, DeeperCut [Insafutdinov et al., 2016], based on

the ResNet-101 [He et al., 2016] architecture. The approach is a detection-based

system, which generates a likelihood heatmap for each joint of the pose. At test

time, the coordinate of each joint is determined by locating the point that has the

maximum value in each likelihood heatmap (also called scoremap).

Although pose estimation networks usually accept only RGB images as input, they

can be easily extended to accept additional channels by increasing the depth of

the filters of the first convolutional layer (from 3 to 3 + n, where n is the number

of extra channels).

• It is the Current Image at frame t, in RGB color mode.

• P h
t−1 is the Previous Frame Pose of person h predicted on image It−1. In the

case where t = 1, the previous frame mask P h
0 is already available as ground truth

due to the semi-supervised setting of the task.

The motivation to condition the prediction of P h
t by P h

t−1 comes from the temporal

consistency assumption, i.e. objects do not change their pose configuration and

position too much from one frame to another. Therefore, the previous predicted

pose can be a good indicator of the location and pose configuration in frame t.

We encode the previous frame pose P h
t−1 in a similar fashion as P h

t , using one

binary channel for each body part. Each channel contains a circular blob around

the joint coordinate. If there is no coordinate for the particular joint, the respective

channel will be the null matrix.

Figure 4.1 shows two such poses. For visualization purposes, the joint channels

are overlapped. Note that the blobs in P h
t do not look perfectly circular, as the
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w(P h
t−1,Ft)

It

P h
t

Figure 4.1: HumanPoseTracker architecture. Inputs include the RGB image It and
the previous frame pose and motion information as w(Ph

t−1,Ft). The tracker is trained
to predict Ph

t .

shape of the output is 8 times smaller than the input in each spatial dimension,

due to the (8 px stride).

• Ft is the Optical Flow between image It−1 and image It, which estimates the mo-

tion vector between the two frames. In our case, we compute it using FlowNet2.0

[Ilg et al., 2017], which is itself a trained convolutional neural network. It is esti-

mated by only using the two RGB images It−1 and It as input.

• w is an operation which warps the coordinates of each joint with the optical flow.

We warp the previous frame pose P h
t−1 with the estimated optical flow Ft in order

to have a better localized pose. While P h
t−1 is a good estimate of P h

t , the warped

version w(P h
t−1,Ft) is even more indicative, as it incorporates motion information.

This method of leveraging optical flow was previously shown to be effective in

[Khoreva et al., 2017a] in the task of video object segmentation.

See Figure 4.1 for a visualization of the simplified HumanPoseTracker architecture.

Once trained, the HumanPoseTracker is initialized with the first frame ground-truth

pose of the person it is supposed to track and then proceeds predicting the future poses

frame by frame, following the temporal order. Note that the tracker is not fine-tuned

from one frame to another, only its input changes.

4.1.2 Training Stage

The fact that the tracker architecture does not exploit longer temporal information (over

many frames) comes to the benefit of the training procedure, which does not require
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expensive densely annotated frames. Inspired by the approach of [Khoreva et al., 2017b],

instead of using ground-truth poses P h
t−1, P

h
t of consecutive frames, we only use ground

truth annotations for P h
t and instead synthesize w(P h

t−1,Ft). This way, the network can

be trained with static images only, using image-level pose estimation datasets. This is

highly beneficial since video pose datasets contain limited appearance variability, while

image-level pose datasets are usually large scale, covering many human appearances.

4.1.2.1 Previous Frame Pose Synthesis

The warped previous frame pose w(P h
t−1,Ft) is, in essence, a noisy version of P h

t , with

noise introduced by the prediction in the previous frame and by the estimation of the

optical flow. As in [Khoreva et al., 2017a], instead of synthesizing P h
t−1 and Ft separately,

we synthesize w(Mh
t−1,Ft) directly.

To simulate the noise that we expect at test time, we shift each joint coordinate in

P h
t with a displacement vector. We do not model any dependence between joints, we

assume there is no correlation between the noise of different body parts. The angle of the

displacement vector is sampled uniformly, and its length is sampled from an exponential

distribution. The sampling parameters were chosen based on statistics in the training

set of the PoseTrack [Andriluka et al., 2017] dataset.

4.1.2.2 Data Processing and Augmentation

Each training sample corresponding to a human h contains an image It, the expected

output P h
t and the randomly generated w(P h

t−1,Ft).

As the datasets that we are using for training and testing provide a head bounding

box of the annotated person, we assume we also have access to it. The head bounding

box is only used for estimating the height of the person. We do not consider the access

to a head bounding box a requirement for our method, as one could also estimate the

height of the person from its pose. As DeeperCut functions optimally when the person

of interest has height of 340 px, we use the estimated height of the person to rescale the

training sample to match this reference height. At test time, for each tracked human h,

we rescale the entire sequence to the reference scale based on the height of h estimated

from its one frame supervision. This assumes that the height of a person does not change

drastically across the video sequence.

To help the tracker localize the person of interest, we adopt cropping around the

target person. After padding the bounding box of the person’s pose P h
t with 250 px in

each direction, we cut-out the outer parts of the image. At test time, we crop around
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w(P h
t−1,Ft), as P h

t is not available. A tighter padding would impair the network from

learning to track in crowded scenes, where more context is required to distinguish the

target person.

The training procedure of DeeperCut contains a data augmentation step, which

we also adopt for generating more training data. We apply random rescaling ±15%,

random rotations ±30◦ and random flipping around the vertical axis.

4.1.2.3 Training Modalities

The training procedure includes the following stages, in this order:

1. ImageNet pre-training - a common training stage in most CNNs; pre-training

on a large classification dataset like ImageNet [Deng et al., 2009] ensures that the

network is properly learning generic feature extractors that it might otherwise not

be able to learn only with a smaller dataset;

2. Offline training - optimizes the CNN weights for the task of single person pose

propagation; we train on an image level multi-person pose estimation dataset,

where each human in each image becomes a training sample; the aforementioned

data processing and augmentation is applied to the dataset;

3. Per-person tuning - trains the network to track a particular human h, using as

training data only the supervision available for that specific person; the aforemen-

tioned data processing and augmentation is applied to the supervision; the tuning

creates one tracker fh per test person h, which is able to recognize the appearance

of the person it was trained with; the idea is inspired from [Khoreva et al., 2017b]

where it is used for the task of video object segmentation;

4.1.3 Testing Stage

After initializing the tracker of a person, we perform tracking twice, once in the forward

direction, once in the backward direction. The output of the tracker is a full pose (one

coordinate for each joint type) and a detection score for each joint. However, some of

the joints may be incorrect. As we feed this pose back into the tracker, incorrect joints

can propagate the error to the consequent frames. To drop incorrect joints, we threshold

the joint detection scores. If the score of a keypoint is smaller than 0.7, we remove the

keypoint from the predicted pose.

Ideally, the keypoint thresholding technique should remove all keypoints of the pose

in the case when the tracked person completely disappears from the scene. However,
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this condition is not always enough for stopping the tracking, so we propose two other

stopping criteria:

• if all keypoint detection scores of a pose are smaller than 0.98, stop tracking;

this strategy can be seen as a direct relaxation of the previous stopping criterium

(stopping when all scores are smaller than 0.7);

• if the scene changes, stop tracking; to detect if a scene changes, we implement a

simple scene change detector, which we test visually on the PoseTrack training set;

the system checks consecutive frames, and it detects scene changes if the histogram

and entropy of the two images vary significantly;

Note that the chosen detection score thresholds were cross-validated for maximizing

the mMOTA score, with the condition of not hurting the mAP score.

4.2 Experiments

4.2.1 Experimental Setup

4.2.1.1 Dataset

To test our tracker, we require a dataset containing video-labeled multi-person poses.

The only such dataset which contains relatively long sequences (more than 50 frames)

is the recent PoseTrack [Andriluka et al., 2017], which we adopt for testing.

The sequences are selected as videos around certain single images in the MPII

Human Pose dataset [Andriluka et al., 2014]. They include diverse human activities

(recreational, occupational, household-related). The sequences are selected to contain

extensive pose and appearance variation (see Figure 4.2), as well as a high amount of

body motion. People can be highly occluded by other people or objects, and truncated.

It can happen that people disappear and reappear in the scene. In addition to this, each

video can contain multiple viewpoints (of the same scene or a different one) and in this

case the track ID of the person changes when the shot is switched.

As our method requires one pose supervision for each track, we report our findings

on the validation set, whose annotations are publicly available. It contains 50 videos

with a total of ≈ 700 annotated people. The length of the sequences ranges from 65 to

298 frames. In each video, 30 frames are densely annotated and all the other frames (to

the left and to the right of this interval) contain annotations only every 4 frames. This

amounts to a total of ≈ 19k poses.
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Figure 4.2: Example annotations from the PoseTrack dataset [Andriluka et al., 2017].

For each track ID in the test set, we choose as supervision the pose in the middle

of the track. In case the middle of the track is a frame which is not annotated, or

is annotated but the person is not in the frame, we select as the middle of the track

the closest frame which contains the particular track ID. We do not use this mid-track

point as anything other than a starting point for tracking in the two directions. For

example, our method does not use the fact that it is located in the middle of the track

and implicitly the tracking in the two directions will run for roughly the same number

of frames.

The pose in PoseTrack contains 15 body joint types: head, nose, neck, shoulder,

elbows, wrists, hips, knees and ankles.

To train the tracker, our method requires only image-level multi-person poses. There

are basically two large scale datasets available: MPII Human Pose [Andriluka et al.,

2014] and MS COCO Keypoints [Lin et al., 2014]. Although COCO contains the largest
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number of people, we train on MPII-Pose for its images come from the same domain as

the PoseTrack data that we use for testing.

Alternative approaches, that we did not experiment with, would have been to train

on COCO and fine-tune on MPII-Pose, or train on COCO and fine-tune on MPII-Pose

and the PoseTrack training set. On their own, PoseTrack Train does not contain enough

appearance variability and COCO is from a different domain to the testing set.

The MPII Human Pose training set that we use for training contains ≈ 29k poses.

The pose is represented by 14 body joint types, which are the same as in PoseTrack,

with the exception of the nose, which is not represented in MPII Human Pose. We

remove the nose joint from the PoseTrack annotations and report all results on the 14

joint types common in both datasets.

For collecting the statistics required to sample noise in the previous frame pose

synthesis, we use the training set of PoseTrack, as it is densely annotated.

4.2.1.2 Evaluation Metrics

We adopt the evaluation metrics proposed in the PoseTrack benchmark [Andriluka et al.,

2017]: Average Precision (AP) for multi-person pose estimation and Multiple Object

Tracker Accuracy (MOTA) for multi-person pose tracking. As our method approaches

the multi-person task separately for each person, we find it relevant to also compute a

single-person pose estimation metric, namely the head-normalized probability of correct

keypoint (PCKh).

Computing these metrics requires that a head bounding box annotation is available

for each ground truth pose. It is used to compute a person-specific distance threshold,

set to 30% of the length of the diagonal of the bounding box. A predicted keypoint

is correctly localized if its distance to the ground truth (GT) location lies within this

distance. The PCKh score between a GT pose and a predicted pose is calculated as the

number of correctly localized joints divided by the total number of GT joints.

• AP is used to measure the per-frame performance of a multi-person pose estimator.

It requires joint detection scores as input, but no track IDs of the poses. First,

a greedy matching is computed between the predicted poses and the GT poses.

Each predicted pose is assigned to the closest GT pose based on the highest PCKh.

To ensure that only one predicted pose can be assigned to each GT pose, the

predicted pose with the highest PCKh is selected as the match for the GT pose.
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The remaining predicted poses are counted as false positives. With this matching,

for each body part, the AP score is computed using the detection score given as

input. Mean AP (mAP) is calculated as the AP score averaged over all body joint

types.

• MOTA is used to evaluate multi-person pose tracking. It requires track IDs as

input, but no joint detection scores. First, for each joint type in each frame, all

distances between predicted joints and corresponding GT joints are computed. All

(GT,prediction) pairs in which the prediction is correctly localized as GT (based

on the PCKh threshold) are considered for global matching. Global matching,

which takes into account the track IDs of the pairs, minimizes the total assignment

distance. This produces a match between GT track IDs and predicted track IDs

for each body joint. With this match, Multiple Object Tracker Accuracy (MOTA)

is computed for each keypoint type, as well as their average, mMOTA.

• PCKh is used to evaluate per-frame single-person pose estimation. It requires

neither joint detection scores, nor track IDs of the predicted poses. First, in each

frame, matching is performed between the predicted poses and the GT poses as in

the process of computing the mAP. With this matching, for each keypoint type,

PCKh is computed as the probability of the GT joint type to be correctly predicted

(within the PCKh threshold). mPCKh is computed as the average over all body

joint types.

As discussed before, our method requires supervision at test time in the form of

one pose per track. We do not remove these poses from the GT, we keep them in the

evaluation. On the other hand, we remove the nose keypoint from the GT, since our

tracker was trained without it, as described in Section 4.2.1.1.

4.2.1.3 Training Details

For training, we use the same learning parameters as in the TensorFlow [Abadi et al.,

2016] implementation of [Insafutdinov et al., 2016]. Optimization is done using stochastic

gradient descent with 1 image per batch.

In the offline training stage, we start with the learning rate lr = 0.005 for 10k

iterations, then lr = 0.02 for 420k iterations, lr = 0.002 for 300k iterations and lr =

0.001 for 300k iterations, which amounts to a total of 1030k iterations. In the per-person

tuning stage, where we train the model for a specific person, we train for 1k iterations

using lr = 0.002. We experimented with a larger number of iterations and a smaller

learning rate, but we did not observe any improvement.



40 Chapter 4 Human Pose Tracking

Variant mAP (∆) mMOTA (∆) mPCKh (∆)

HumanPoseTracker 72.6 64.6 76.3

Pose Tracking winner [Girdhar et al., 2017] 59.7 (-12.9) 54 (-10.6) 65.6 (-10.7)
Pose Estimation winner [Zhu et al., 2017] 67.2 (-5.4) 20.1 (-44.5) 71.8 (-4.5)

Table 4.1: Comparison of our best tracker to the winners of the PoseTrack challenge
[Andriluka et al., 2017]. Note that the challenge winners do not assume supervision at

test time.

We initialize the first convolutional weights corresponding to the extra input chan-

nels w(P h
t−1,Ft) with the already ImageNet trained weights corresponding to Iht .

In terms of computation time, offline training takes around 4 days, while fine-tuning

lasts around 6 minutes per person. At test time, the system runs at around 0.7s per

frame, including the optical flow estimation with FlowNet2.0 [Ilg et al., 2017]. Our

experiments run on a single NVIDIA Tesla K40 GPU with 12 GB RAM.

4.2.2 Key Results

Since to the best of our knowledge there is no prior work addressing the semi-supervised

scenario of multi-person pose tracking, we compare our main result against the unsuper-

vised approaches that have recently achieved state of the art results on the PoseTrack

dataset. Though not a fair comparison, it helps to understand how much a pose tracker

can benefit from test-time supervision.

4.2.2.1 PoseTrack Challenge Winners

As all the other methods proposed in the PoseTrack challenge, the pose tracking

winner [Girdhar et al., 2017] proposes a tracking-by-detection framework. First, multi-

person pose estimation is performed on the image level (in this case using Mask-RCNN

[He et al., 2017]) to detect all poses in each frame. Secondly, the poses are linked across

the frames into tracks. In the case of the tracking winner [Girdhar et al., 2017], matching

is performed using the Hungarian Algorithm, where the cost of matching is computed as

the overlap between bounding boxes of the persons in different frames. Table 4.1 shows

the performance of this method on both pose tracking and pose estimation tasks.

The pose estimation winner [Zhu et al., 2017] builds upon the Part Affinity

Fields framework [Cao et al., 2016] and proposes several improvements. These include

modifying the structure of the kinematic tree, using advances in semantic segmentation

to improve the network architecture, as well as training on external training data. Its

performance on the multi-person pose estimation task is shown in Table 4.1.
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Frame 7 Frame 1 Frame 17

Frame 37 Frame 28 Frame 47

Frame 67 - GT supervision Frame 58 - GT supervision Frame 77 - GT supervision

Frame 97 Frame 88 Frame 107

Frame 127 Frame 117 Frame 118

Figure 4.3: Qualitative results of HumanPoseTrack.

4.2.2.2 HumanPoseTracker

Our proposed system HumanPoseTracker, previously explained in Section 4.1, can per-

form pose tracking in one stage, but at the cost of requiring one pose supervision for

initializing each track. Qualitative results are shown in Figure 4.3. Note how our tracker

can handle high variations of the pose (left and mid sequence), fast movements (mid

sequence), as well as scene changes (2 changes in the right sequence where the tracker

manages to stop).

The tracker is, however, not perfect. Frame 127 in the left sequence also displays a

failure case at the feet and knees joints, right after they were occluded by the person in

front of them. In this case, the predictions wrongly move together with the person that
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Variant mAP (∆) mMOTA (∆) mPCKh (∆)

HumanPoseTracker 72.6 64.6 76.3

NO Flow Warping 65.6 (-7.0) 58.4 (-6.2) 69.1 (-7.2)
NO Per-Person Fine Tuning 66.3 (-6.3) 56.0 (-8.6) 70.6 (-5.7)

Table 4.2: Ablative Study: effect of flow warping and per-person fine-tuning.

occluded them. This is caused by the flow, which moves the previous predicted joints

in the direction of the movement of the person in front of them. A possible fix could

be to introduce more noise in the synthesis of w(P h
t−1,Ft) during training. Frame 1 in

the mid sequence also shows a failure case in the estimation of the pose, which is not

surprising given the highly uncommon articulated pose of the person.

4.2.2.3 Comparison

The quantitative comparison between our method and the PoseTrack challenge winners

is shown in Table 4.1. By integrating one supervision per track during test time, our

method manages to significantly improve both single-image multi-person pose estimation

and multi-person pose tracking results. The highest mAP score is improved by 5.4, while

the highest mMOTA increases by 10.6.

Successfully addressing both tasks at the same time is challenging, as it can be seen

from the scores obtained by the winning methods on the challenges that they do not

optimize for. The Pose Tracking winner is 7.5 points behind the state of the art on the

Pose Estimation task, while the winner of the Pose Estimation challenge is 33.9 points

behind the best mMOTA result.

The mPCKh score, a single-person pose estimation metric insensitive to track IDs

or detection scores, also shows improvement for our method, indicating that localization

of keypoints is more accurate.

4.2.3 Analysis

In this section, we present an extensive ablation study, which validates various design

choices of our model.

4.2.3.1 Effect of Flow Warping and Fine Tuning

Table 4.2 shows, on one hand, the influence of warping the previous frame mask with

the optical flow. At training time, we keep the same procedure, while at test time we
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Variant mAP (∆) mMOTA (∆) mPCKh (∆)

HumanPoseTracker 72.6 64.6 76.3

NO Joint Thresholding (thresh=0.7) 72.6 (0) 41.3 (-23.3) 79.4 (+3.1)
NO Stop Tracking when all joint scores ≤ 0.98 72.5 (-0.1) 62.9 (-1.7) 76.4 (+0.1)

NO Stop Tracking when scene changes 72.4 (-0.2) 62.2 (-2.4) 76.9 (+0.6)

Table 4.3: Ablative Study: effect of keypoint thresholding and stopping tracking
criteria

use P h
t−1 instead of w(P h

t−1,Ft) as an estimate of P h
t . The 7.9 mAP, 6.1 mMOTA and

7.2 mPCKh improvements when warping confirm that the optical flow contributes to a

better estimation of P h
t .

To avoid warping with the flow, we would have to simulate P h
t−1 from P h

t during

training time, which would require modeling the dependencies between keypoints in the

same image as well as across consecutive frames. For its simplicity and effectiveness, we

only experimented with flow warping.

Second, the table shows similar decreases in performance (on all metrics) when

removing the last training stage, the per-person fine tuning. In this case, we use the

same CNN model for all tracked persons in the dataset. When analyzing the qualitative

results, we see that without fine tuning the tracker experiences drift to other people

and objects or the pose disappears. This happens as the CNN has no knowledge of the

appearance of the tracked person other than the P h
t−1 input, which is only an estimate.

Fine tuning per person ensures the appearance of the person is encoded in the weights

of the CNN as well.

4.2.3.2 Joint Thresholding and Stopping Criteria Influence

Table 4.3 shows, on one hand, the influence of removing keypoints by thresholding their

detection scores. During cross-validating the threshold, we observed that by increasing

the threshold within the [0, 0.95] interval, the mAP score is decreasing because of an

increase in false negatives, while the mMOTA increases due to fewer incorrect detections.

For this reason, the 0.7 threshold was selected as it maximizes the mMOTA score while

still not degrading the mAP score.

We can see that thresholding joint detections has a very high positive impact on

the tracking results (increase by 23.3 on mMOTA). Thresholding does not only remove

incorrect detections in the frame where it is performed, but in our case it also prevents

the tracker from propagating the errors to the next frames.
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The two stopping criteria we adopt are also improving the tracking results by re-

moving false positive people detections. By visually inspecting their effect, we saw that

they can also introduce false negatives. This can happen when the scene change detec-

tor wrongly classifies a frame as a scene transition point. Note that the scene change

detector we use is very simple and it does not involve any learning, so there is room for

improvement in this stage of the pipeline. Also, our method is not designed to restart

tracking once a person who disappeared from the scene returns, so false negatives can

also be introduced in this case.

Note that the mPCKh score is actually hurt by the thresholding and the stopping

criteria. This is expected, as mPCKh does not punish false positives detections. There-

fore, removing false positives does not influence the mPCKh score, while removing true

positives decreases it.

4.2.4 Leveraging Additional Supervision

Having shown significant improvement in both pose tracking and pose estimation us-

ing only one pose supervision per track, we now investigate the impact of using more

supervision during testing.

We design our experiments to use more and more supervision. For each track ID,

we collect one pose supervision in the middle of the track as described in the original

setting. Afterwards, we proceed forward and backward starting with the middle of the

track and collect supervision for the specific track ID every k frames (if available). The

validation set of PoseTrack is densely annotated for only 30 frames in the middle of

each sequence, while the tails are coarsely annotated, every 4 frames. To make sure the

supervisions we collect are distanced equally from each other, we choose k as a power

of 4. A large sampling rate (k = 1000) for the sequences in PoseTrack implies that only

the middle of the track is used as supervision, which is our original setting. We compute

the supervision percentage as the percentage of GT annotations used as supervision,

averaged over all track IDs. In the case of PoseTrack, the supervision percentage is not

1/k, as the videos are not densely annotated. The supervision percentage is relevant as

we do not eliminate the supervision poses from the evaluation.

For each track ID, all the collected supervision is used to fine-tune the offline-trained

tracker, which creates one model per tracked person. The alternative of training one

model for each pose supervision would be too computationally expensive.

At run-time, for each track ID, for each pose supervision, we initialize the tracker

and proceed tracking backwards and forward for k/2 frames with the same thresholding
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Sampling Rate k Supervision Percentage mAP mMOTA mPCKh

4 49.68 97 95.5 97.2
8 24.86 92.4 88.6 93.1
16 12.42 86.7 81.2 88.3
32 6.48 79.2 72.3 82
64 3.58 72.6 65.3 76.3

1000 3.37 72.6 64.6 76.3

Table 4.4: The effect of using more supervision during tracking.

mAP
mMOTA
mPCKh

Supervision Percentage

S
co

re

Figure 4.4: The effect of using more supervision during tracking. The x axis represents
the percentage of GT used as supervision during testing, averaged across all tracks. The

y axis represents the score of the particular plotted metric.

and stopping criteria techniques as described before. To obtain the final track, we merge

all tracks generated by the supervision poses of a particular person.

The results of the experiments are shown in Table 4.4, and plotted in Figure 4.4.

We can see that the performance of the system increases with more supervision, from

72.6 mAP, 64.6 mMOTA and 76.3 mPCKh when using only one pose per track, up to

97 mAP, 95.5 mMOTA and 97.2 mPCKh when using supervision every 4 frames. These

results show that for a dataset annotated coarsely, every 4 frames, our system could be

used to predict very accurate poses in between the annotated frames, turning it into a

densely annotated dataset.

4.2.5 Conclusion

Our experiments show that the task of multi-person pose tracking can benefit signifi-

cantly from using one pose supervision per track during test time. The method manages

to notably improve both pose estimation and pose tracking results at the same time.
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Further parameter tuning can make these improvements even higher when targeting one

task at a time.

We show the effectiveness of each of our design choices through an extensive abla-

tion study. Fine-tuning per object and leveraging optical flow, techniques proposed for

the task of video object segmentation, prove to be highly effective for supervised pose

tracking as well. Also, removing unconfident joint detections is shown to be important

for pose tracking in general and for our propagation method in particular.

Finally, we show that our method can be extended to leverage more supervision

during test time and it has the potential to be used for generating dense from sparse

annotations in videos.
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Conclusion

To summarize, our work addresses the multi-person tracking task with two types of

representation: body pose and segmentation mask. We explore these scenarios in the

semi-supervised setting, where one available annotation is available per person during

test time. More complex representations of people (segmentation mask and body pose)

can provide richer understanding of visual scenes, and methods that leverage supervision

during test time should be developed for the cases when supervision is available.

We propose HumanMaskTracker for the task of video human segmentation. Our

approach builds on recent techniques proposed for the task of video object segmentation.

These include the mask refinement approach, training with synthetic data, fine-tuning

per object and leveraging optical flow. In addition, we propose leveraging instance

semantic segmentation proposals to give the tracker a better notion about the human

class. Moreover, we propose modeling occlusions inside the data synthesis process. This

proves to make the tracker more robust to the challenges of occlusion and disocclusion.

For the task of semi-supervised multi-person pose tracking, we propose the method

HumanPoseTracker. We show that the task of multi-person pose tracking can benefit

significantly from using one pose supervision per track during test time. The method

actually manages to notably improve both pose estimation and pose tracking results at

the same time. We show the effectiveness of each of our design choices. Fine-tuning

per object and leveraging optical flow, techniques proposed for the task of video object

segmentation, prove to be highly effective for supervised pose tracking as well. Also,

removing unconfident joint detections is shown to be important for pose tracking in

general and for our propagation method in particular. A promising application of our

work is shown by extending our method to leverage more supervision during test time.
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